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METHOD AND CERTAIN RESULTS OF A SEMIEMPIRICAL DESCRIPTION 

OF THE HEAT CONDUCTIVITY OF COMPOSITE MATERIALS 

V. L. Mal'ter, N. V. Bol'shakova, 
and A. V; Andreev 

UDC 536.2 

A semiempirical method of describing the heat conductivity of composite mate- 
rials is described. Examples are presented of its application to determine 
the heat conductivity of gas mixtures, solid-porous quartz materials, and 
aluminosilicate refractories. 

The expression of the effective transport coefficients of heterogeneous systems in 
terms of the transport coefficients of the components is the main content of research by 
a large number of authors to whom references can be found in [i, 2]. 

Some new results which have successfully been obtained in a consideration of the heat 
transport in a heterogeneous material from bhe aspect of one of the known approaches 

TABLE I. Comparison of Results of ComputSng the Heat Conduc- 
tivity of Binary Mixtures of Monatomic Gases by the Hirschfel- 
der et al. Method [9] (%[9], W/m.deg) and Formula (4) with the 
Constant Kxi2 (~, W/m.deg) 

Mixture 
composi- Parameter 
tion 

H e -  Ne ~91 

~,[9]--X 
- -  �9 100% 

;L[91 

He -- Ar 

He --  Kr 

H e -  Xe 

Ne - -  Ar 

N e -  Kr 

Ne -- Xe 

�9 A r  K r  

Ar - -  Xe 

m r  - -  Xe )) 

0 ,1  

0,05348 
0,05381 

0,620 

0,02273 
0,02277 
0,160 
0,01415 
0,01416 
0,033 
0,00998 
0,00998 
0,013 
0,01956 
0,01956 
0,0057 
0,01115 
0,01116 
0,094 
0,00736 
0,0O737 
0,140 
0,00994 
0,00995 
0,110 
0,00642 
0,00644 
0,330 
0,00607 
0,00608 
0,100 

Volume light gas concentration 

0,3  

3,06553 
3,06600 

3,710 

3,03533 
3,03539 
3,170 
3,02616 
9,02617 
0,033 
0,02061 
0,02061 
0,004 
0,02384 
0,02384 
0,0072 
0,01539 
0,01541 
0,108 
0,0111fi 
0,01117 
0,150 
0,0II1S 
0,01119 1 
0,130 : 
0,00782 
0,0078E 
0,410 
0,00660 
0,00661 
0,120 

0 , 5  0 ,7  

0,08181 0,10390 
0,08181 0,10317 

0,00 --0,710 

0,05291 0,07899 
0,05291 0,07883 
0,00 --0,190 . 
0,04330 0,06970 
0,04330 0,06967 
0 --0,032 

0,03626 0,06159 
0,03626 0,06155 
0 --0,009 
O, 02904 O, 03549 
0,02904 0,03549 
0,00 --0,0075 
0,02104 0,02891 
0,02104 0,02888 
0 --0,104 

" 0 ,01651 0,02458 
0,01651 0,02453 
0 --0,170 
0,01265 0,01439 
0,01265 0,01438 
0 --0,130 
0,00967 0,01213 
0,00967 0,01208 
0 --0,420 
0,00723 0,00799 
0,00723 0,00798 
0 --0,120. 

0 ,9  

0,13443 
0,13357 

--0,640 

0,12137 
0,12113 

--0,200 
0,11562 
0,11558 

--0,032 
0,10953 
0,10952 

--0,012 
0,04370 
0,04370 

--0,0071 
O,O4054 
0,04050 

--0,106 
0,03801 
0,03794 

.-0,180 
0,01649 
0,01647 

--0,110 
0,01551 
0,01545 

--0,370 
0,00889 
0,00888 

--0,110 
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Fig. i. Dependence of the coupling coeffi- 
cient on porosity for metals and alloys: I, 
6) steel, bronze [ii]; 2) iron [12]; 3) nic- 
kel [13]; 4) tungsten (the authors' results); 
5) by the Dul'nev--Novikov formula [5]; 7) 
Misnar [7]; 8) L'vov [6]; 9) Odelevskii [i] 
(the field of data scatter is shaded, and the 
curves are the computation). 

beginning with [3] are elucidated below. According to the Wiener definition, the effective 
heat conductivity of an isotropic composite material is related to the mean heat flux and 
mean temperature gradient by the relationship 

I 
V .f qdV 

v <q> 

t %el = - -  1 vTdV < V T > (1) 
V . 

g 

The components  o f  the  e f f e c t i v e  h e a t  c o n d u c t i v i t y  t e n s o r  in  t h e  d i r e c t i o n  of  t he  p r i n c i p a l  
axes  o f  t he  a n i s o t r o p i c  m a t e r i a l  a r e  found a n a l o g o u s l y .  Le t  us n o t e  t h a t  (1) i s  combined 
o r g a n i c a l l y  w i t h  t h e  m a c r o s c o p i c  e q u a t i o n  o f  h e a t  c o n d u e t i v i t y  by g i v i n g  i t  t h e  t r a n s i t i o n a l  
form of  w r i t i n g  t he  a v e r a g e  t e m p e r a t u r e  [ 4 ] ,  and as i n  t h e  t r a n s p o r t  e q u a t i o n  i t s e l f ,  i s  
a l s o  m e a n i n g f u l  o n l y  i f  under  t he  c o n d i t i o n s  o f  the  p rob lem under  c o n s i d e r a t i o n ,  an e l emen-  
t a r y  macrovolume V whose d i m e n s i o n s  g r e a t l y  exceed  t he  m i c r o i n h o m o g e n e i t y  d i m e n s i o n s ,  w h i l e  
the  l o c a t i o n  o f  t he  m i c r o i n h o m o g e n e i t i e s  and the  t e m p e r a t u r e  d i s t r i b u t i o n  t h e r e i n  a r e  s t a t i s -  
t i c a l l y  homogeneous i n  n a t u r e ,  can a lways  be i s o l a t e d  a round  an a r b i t r a r y  p o i n t .  

Us ing  t h e  o b v i o u s  r e l a t i o n s h i p  f rom [2] f o r  t he  f i e l d  f u n c t i o n  ~: 

v v v \ v ,  ~dV + - 7 -  --V~-~ re*dr , (2) 

w h e r e  V~ and V2 a r e  p a r t s  o f  t h e  a v e r a g i n g  volume V w i t h  t he  componen ts  1 and 2, V = V: +V2,  
and i n t r o d u c i n g  t h e  volume c o n c e n t r a t i o n s  o f  t h e  components  c i = Vi/V and t he  n o t a t i o n  <~>i = 

1 S ~dV, f o r  t he  f u n c t i o n  components  a v e r a g e d  w i t h  r e s p e c t  to  t he  volume~ we r e d u c e  (1) 
V, 

V i 

to  a form c o n v e n i e n t  f o r  s u b s e q u e n t  a n a l y s i s  

ci < q > :+c2 < q > 2 
X e f = - -  q ( V  T > l + c ~ < v  T> 

(3 )  
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Fig. 2. Dependence of the coupling 
coefficient on the porosity for ceram- 
ic materials: i) sandstone; 2) 
chamotte; 3) high-argillaceous light- 
weights; 4) corundum (by the method 
of burning up additives); 5) corundum 
foam; the curves are smoothed values. 

For the case when the heat flux at each point of the composite material is related to 
the temperature gradient by the Fourier law qi = --%iVT (%i equals %z or %2, respectively, 
in the components 1 and 2), the expression (3) becomes 

ci~l < v T  > i + c#~ < v T  > 2 _ ci~lK~ + c~2 (4) 
Zef= ci ( V T ) t "q- c~ ( V T ) ~ - -  c~Kl~ -]- c2 ' 

where Kz2 = <VT>z/<VT>2 (K21 = i/Kz2 could also be introduced, or, Kz = <VT>I/<VT> or K2 = 
<VT>2/<VT> as in [2], however, the introduction of Kz2 (K21) affords definite advantages, as 
will be seen later). 

As is noted in [5], additional information is necessary to determine %ef by means of 
(4), where information about the structure (topology) of the heterogeneous system is used in 
known extensions, which permit closure of the system under consideration. However, a descrip- 
tion of the effective heat conductivity is obtained successfully by such a method for only 
a limited quantity of model structures [i, 2]. 

A number of authors use a purely empirical approach to describe the effective heat con- 
ductivity of composite materials, which permits obtaining satisfactory approximate depen- 
dences for certain investigated groups of materials [6, 7]. 

The method proposed provides for seeking the dependences of the function K12 (or K2z) 
by using test data and a number of its proven properties with a subsequent computation of 
the effective heat conductivity by means of (4). Being semiempirical, the method permits 
obtaining the desired description of the effective heat conductivity of composite materials 
of arbitrary structure with reliance on a minimum of test data. 

The function K12 expressed from (4) hence enters as a similarity number to be deter- 
mined since it contains the desired quantity %ef: 

~-- ~2 c2 (5) 
Kl2= ~ i - - ~ e f  ci 

It is known that the limit values of the heat conductivity of a composite material are 
the maximum and minimum heat conductivities for a structure of alternating interlayers. The 
corresponding boundaries for Kz2 are given by the relationships 

K12 max= 1, K12 min=%~/~l (6) 
and are independent of the component concentrations. Therefore, the domains of possible 
values of the heat conductivity of composite materials are combined in the coordinates 
[Kz2, ~ = %2/%1] independently of the component concentrations. 
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Fig. 3. Comparison of experimental data on heat 
conductivity: a) sandstones [14] [1) m=0.03; 2) 
0.Ii; 3) 0.155; 4) 0.22; 5) 0.29; 6) 0.59]; b) 
refractories [18] (i -- 8hLB-0.4; 2 -- ShTL-0.6; 
3 -- ShLB-I; 4 -- VGLDS-0.5; 5 -- VGLDS-0.7; 6 -- 
VGL-I.3; 7 -- KORL-I.3) with (4) and (ii) aaken 
into account; the points are experiment and the 
curves a computation; ~, W/m-deg. 

Let us note that the above-mentioned functions KI and K2 turn out to be dependent on 
the component concentrations for the limit structures, hence their analysis yields nothing 
new versus the direct consideration of %ef. 

Presented below are examples of applying the approach proposed to the description of 
the heat conductivity of binary systems, from which it follows that certain aspects can, in 
a number of cases, turn out to be a convenient supplement to existing methods, e.g., in the 
selection of appropriate models or formulas for a specific material. 

i. Although the theory presented above has a rigorous foundation only for inhomogeneous 
materials with quite definite boundaries between the components, the first practical applica- 
tion of the method proposed is for a description of the heat conductivity of binary gas 
mixtures [8]. Without going into a polemic on the applicability of the structural approach 
to gas mixtures, let us note one curious fact: it turns out that the quantity K12 is prac- 
tically independent of the component concentrations for mixtures of monatomic gases. Results 
of a computation of the heat conductivity of binary monatomic gas mixtures by means of (4) 
are presented in the table for a constant value of K12 calculated for the concentrations 
ci =c2 = 0.5, and also for computations by the method of Hirschfelder eta!. [9]. As follows 
from their comparison, the discrepancy does not exceed 1% in the worst case, and therefore, 
is within the limits of accuracy of the method of Hirschfelder et ai. The result obtained 
above indicates the generalizing nature of the number K~2 even in this case, in addition to 
the practical convenience of converting from the known heat conductivity of a mixture of one 
composition to an arbitrary concentration. As follows from [i0], for a mixture of given com- 
position the quantity K~2 is practically independent of the mixture temperature. 

2. Values of the functions K~2 and K2~ for zero conductivity of the second and first 
components, respectively, are determined just by the structure of the composite material 
and are an interesting characteristic that has the meaning of a dimensionless degree of 
coupling of the conducting components. An analysis of the data for a large number of iso- 
tropic materials permitted the clarification of the correlation coupling for them: 

K~2 (h2 = 0) ~ K~ (El = 0) = 0~4 -0 ,67 ,  (7)  

which has the obvious physical meaning: an increase in the degree of coupling of one com- 
ponent involves diminution in the degree of coupling of the other. The introduction of 
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the component coupling coefficients permits analysis of the structure of real materials. 
Test values of the coupling coefficients for porous metals as well as curves for the varia- 
tion of the coupling coefficients of a skeleton which was computed by means of [6, 7, 11-13] 
are presented in Fig. i. 

The physically founded tendency in porous metals to an increase in the skeleton coupling 
coefficient with the diminution in porosity should be noted. The significant width of the 
domain of their coupling coefficients is explained by the difference instructurebecause 
of technological features in obtaining specimens by the conditions of pressure, temperature, 
and time of sintering. Hence, despite the fact that each of the computational formulas satis- 
factorily describes a definite group of investigated materials, none is suitable for the 
extension of the heat conductivity of all the presented porous materials. 

At the same time, it follows from Fig. 1 that knowledge of the coupling coefficient of 
a specific material will, in principle, permit the selection of that formula from the set 
of those known that would assure the best description for the heat conductivity;of this 
material under any combinations of the heat conductivity of the components. Presented in 
Fig. 2 are experimental results on the coupling coefficients for groups of sandstones [14] 
and aluminosilicate refractories [15-18]. Attention is turned to the test-data behavior for 
ceramic materials, which differs from the case of porous metals, viz., the nonmonotonic 
nature of the dependence of K~2(0) on m. This can be explained by the developing fracturing 
of the skeleton during diminution of the material porosity (the diminution of K~2(0) for 
m< 0.75 for refractories). The presence of high fracturing in the skeleton of materials 
with a large crystalline phase content can also explains the stratification for refractories 
of different chemical composition, obtained by the method of burning up additives (the dimin- 
ution in k~2(0) as the AI20~ content increases). At the same time, the essential depen- 
dence of the coupling coefficient on the fabrication technology is seen in the example of 
the corundum refractory materials obtained by different methods. The large spread in K~2(0) 
for the chamotte refractories is also evidently associated with the individual specimen 
fabrication technology features. 

Therefore, processing the test data in the form of coupling coefficients permits clari- 
fication of the specific structural features of different materials and taking account of 
them in the description of the effective heat conductivity. 

3. The dependence Ki2(v) is a monotonically increasing function of the argument ~, and 
the following properties which govern its behavior for ~ = 1 can be proved rigorously: 

aKl2, v aK12, K,2(1 )=  1; OKi2, x ( 1 ) , 6 6 - -  ( 1 ) . 6 - -  ( 1 ) =  1, (8) 
�9 av av  av 

where K~2,x, K~2,y, K~2,z are components of the tensor K~2 in the directions of the princi- 
pal anisotropy axes. In particular, from (8) there follows for an isotropic material 

OKI= (1) = - - 1 .  (9) 
Ov 3 

F u r t h e r m o r e ,  i f  two p a r a m e t e r s  g o v e r n i n g  t h e  v a l u e  o f  K~=(v) on t h e  b o u n d a r i e s  o f  t h e  
domain  o f  v a r i a t i o n  o f  ~,  Ko = K~2(0) and K~ = K12(~ ) ,  a r e  i n t r o d u c e d ,  t h e n  by  t a k i n g  a c c o u n t  
o f  t h e  p r o p e r t i e s  (8) and (9) we can  t r y  t o  s e l e c t  a f o u r - p a r a m e t e r  a p p r o x i m a t e  f o r m u l a  f o r  
t h e  d e p e n d e n c e  K(v)  = K ~ 2 ( ~ ) .  I n  p a r t i c u l a r ,  by  t a k i n g  i n t o  a c c o u n t  t h a t  K(v)  can  be  r e p r e -  
s e n t e d  in the form of the quotient of two infinite power series 

�9 K ( v ) =  a o + a l v + a ~ v 2 . 6  . . .  , (10) 
bo "6 b t v  - 6  b2v ~ "6 �9 �9 �9 

we obtain the following approximate formula: 

K (v) : Ko [ 1.6 
_1-Ko ''~ { I<. l, T 
K%"--I  Ko) 

- -  , 

1 "6 K, /n 1 v 

by imposing an additional condition on the coefficients ap, bp, e.g., by taking them as 
binomial coefficients, where the exponent n is determined from the equation 

(il) 
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OK~,~ KY ~ -  K~/~ 
n Ov (1) (1 - -  K~/~) (KY ~ -  1) ( 1 2 )  

The experimental data on the effective heat conductivity on sandstones [14] and alumino- 
silicate refractories [18] are compared in different media in Figs. 3a and b with a compu- 
tation by means of (4) using the approximation (ii). In connection with the lack of experi- 
mental values of K~ it was assumed K~= 2.5 in the computation with (7) taken into account. 

The quantity Ko for sandstones was computed from experimental values of %ef in a vacuum, 
and for the aluminosilicates from experimental data for filling the pores with argon. The 
rms deviation of the computed and experimental data for 45 points was 6.2%. 

Therefore, as follows from the examples presented, the semiempirical method proposed to 
describe the effective heat conductivity of composite materials can turn out to be useful 
in solving applied problems. 

NOTATION 

V, averaging volume; T, temperature; q, heat flux; Xef, %1, %2, effective~ and first 
and second component heat conductivities; c, volume component concentration; ~ = %2/%~, 
relative heat conductivity of the component; K~2, similarity number to be determined; K~2(0), 
K2~(0), coupling coefficients of the conducting components; Ko, K~o, values of K~2 for ~=0 
and v = ~. 
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SELECTION OF THE OPTI~IAL QUANTITY OF INITIAL DATA 

AND THE NUMBER OF COEFFICIENTS IN COMPILING EQUATIONS 

TO COMPUTE THE THERMOPHYSICAL PROPERTIES OF SUBSTANCES 

A. A. Vasserman, A. Ya. Kreizerova, 
and V. V. Litovchenko 

UDC 533.1 

The question of limiting the quantity of data used in compiling the equations to 
compute the thermophysical properties of substances is investigated, and a method 
to optimize the number of coefficients therein is developed. 

The use of an electronic computer permits compilation of multiconstant equations of 
state and equations of the transport properties by numerous experimental data. However, an 
increase in the volume of the data being used and in the number of coefficients does not 
always by far contribute to a rise in the accuracy of the equations. This is explained by 
calculational instabilities which occur in the solution of the appropriate system of high- 
order normal equations. The use of duplicate data in the formation of such a system can 
degrade its specificity. It is hence expedient to consider the question of a logical con- 
straint on the volume of test data and the number of coefficients of the empirical equations. 

Finding the optimal number of test points needed for a reliable description of a sur- 
face, and the density of their distribution on this surface requires the solution, in prin- 
ciple, of a very complex problem of the calculus of variations. Sufficiently general results 
can also be obtained by performing computationd on reliable data for a well-studied substance, 
by using an electronic computer. 

Initially, the possibility of limiting the number of p, v, T data in the Compilation of 
the equation of state of a fluid whose thermodynamic surface is sufficiently simple was 
investigated [i]. To do this, a number of equations of state of water were compiled on the 
basis of a different number of tabulated data [2]. The array of initial data was separated 
into a number of groups, each of which included practically the whole surface being described. 
The number of groups being used was successively reduced in compiling the different equations 
of state, but a comparison was performed for the total array. A reduction in the number of 
points taking part in compilation of the equation from 882 to 55 contributed to a twofold 
reduction in the rms error of the description of the whole array. 

The results in [i] were confirmed in a compilation of a single equation of state for 
water and steam for the 273-I073~ temperature range and pressures to i00 MPa. To approxi- 
mate actual conditions in the machine experiment~ random errors, normally distributed within 
• limits, were inserted in the tabulated values of the specific volume at this stage 
of the investigation. 

Besides the comparison with thermal data, the influence of curtailing the number of 
p, v, T data being used on the accuracy of describing the derivatives (~p/~v)T, (~p/~T)v 
and the specific heat C v was estimated by comparing the appropriate computed values and the 
data in [3, 4]. As in computations with the tabulated data, cutting down the number of 
"test" points used contributes to a rise in the accuracy of describing the initial data 
array (Fig. i). The optimal accuracy is achieved in compiling equations on the basis of 816 
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